

Ammonia Liquid Chiller Series FX PP, LP, VP 200 –6000 kW

Product Information

SERIES OVERVIEW

AMMONIA LIQUID CHILLER FX P

Capacity range	200 –350 kW	450 –900 kW	800 –2800 kW	3300 –5800 kW
Screw Compressor (SC)	Small highintegrated	Medium compact	Large traditional	X-Large traditional
	$\begin{array}{c} \text{4 Types: C, D, E, G} \\ \text{swept volume } V_{th} \\ V_{th} \text{= 231 375 m}^{3} \text{/h} \end{array}$	$\begin{array}{c} \text{4 Types}: \text{H, L, M, N} \\ \text{swept volume } \text{V}_{\text{th}} \\ \text{V}_{\text{th}} \text{= } 450 860 \text{ m}^{\text{3}} \text{/h} \end{array}$	$\begin{array}{c} \text{6 Types: P, R, S, V, W,Y, Z} \\ \text{swept volume V}_{\text{th}} \\ \text{V}_{\text{th}} \text{= 805 2748 m}^{3} \text{/h} \end{array}$	$\begin{array}{c} \text{4 Types: XA, XB, XC, XD} \\ \text{swept volume } V_{th} \\ V_{th} \text{= } 3250 \ldots 5800 \text{ m}^{3} \text{/h} \end{array}$
Screw Compreesor Packages (SCP)	SMALL	MEDIUM	LARGE	X-LARGE
Liquid Chiller	SMALL	MEDIUM	LARGE	X-LARGE
Evaporator Type	Plate type evaporator	Plate type evaporator	Plate type evaporator	Plate type evaporator
Working principle	Flooded evaporation	Flooded evaporation	Flooded evaporation	Flooded evaporation
Liquid separator	horizontal	vertical	vertical	horizontal
Condenser Type P	Plate type condenser	Plate type condenser	Plate type condenser	Plate type condenser
Condenser Type L	Air-cooled condenser	Air-cooled condenser	Air-cooled condenser	Air-cooled condenser
Condenser Type V	Evaporative condenser	Evaporative condenser	Evaporative condenser	Evaporative condenser
For transportation divided into	1 fragment	1 fragment	3-4 fragments	4-5 fragments

DESIGNATION CODE AMMONIA LIQUID CHILLER

DESIGNATION CODE

P P NH3 FX 900 HP Series Flooded evaporation Condenser model P - plate type evaporator L - air cooled condenser V - evaporative condenser Evaporator model P - plate type evaporator Capacity of liquid chiller in kW refer to cold water operation Chiller design type: without indication: Standard design **S**: Special design HP: High Performance design

Refrigerant

Screw Compressor	Nominal capacity in kW			
С	200			
D	250			
E	300			
G	350			
H	450			
L	550			
M	650			
N	900			
P	800			
R	1100			

Screw Compressor	Nominal capacity in kW
S	1300
V	1700
W	2000
Y	2400
Z	2800
XA	3300
XB	4200
XC	5000
XD	5800

DESCRIPTION OF FUNKTION AND DESIGN

AMMONIA LIQUID CHILLER SERIES FX P

INTRODUCTION

The standard ammonia liquid chiller programme comprises well-proven components which are assembled to form complete refrigerating systems both for medium and large refrigerating and air conditioning requirements.

Main fields of application:

- old water for air conditioning
- cold brine for air conditioning with combined ice storage operation
- cold water for industrial processes
- cold brine for industrial processes
- (cold) and warm water for heat pump operation

On principle, the refrigerant used in the refrigerating systems is ammonia which features a high specific refrigerating capacity, a low energy demand, an attractive price and an environmentally neutral behaviour.

Based on the screw compressor series, the ammonia liquid chiller programme covers a refrigerating capacity ranging from 200 to 5800 kW, related to the cold water range. The capacity ranges are determined by the 18 sizes of the Grasso screw compressors.

The liquid chiller programme consists of three series which comprise different condenser designs and are operated with flooded evaporator systems on the basis of gravity recirculation.

The ammonia liquid chillers are of modular design and consist of the following main modules:

- Standard Screw compressor unit
- heat exchanger assembly with low-pressure separator and oil return system
- low-voltage switchgear installation with control device

The modular design of the chillers is guided to the standard series of Grasso screw compressor packages, wich are executed with horizontal oil separators within the SMALL series and vertical oil separators within the MEDIUM and LARGE series.

For chillers equipped with SMALL packages is the liquid separator with respect to the package design as well executed in horizontal design. For MEDIUM and LARGE series chillers vertical compact vessels are used for liquid separation. This ensures the compact design of ammonia liquid chillers.

For the new X-LARGE size of packages a horizontal liquid separator is used in difference to the vertical oil separator.

Solely plate-type evaporators are used as evaporators. Each series is optionally fitted with a standard evaporator, but can also be adapted to specific operating conditions and customer requests, if need be. On the condenser side, the following versions are used:

- plate-type condenser PP
- evaporative condenser VP
- air cooled condenser LP

The ammonia chillers 200 – 550 will be delivered as a compact, complete pre-fabricated factory packaged and wired unit, ready for connection on site.

The modular design enables a divided delivery in different parts especially from the chiller size 800 up to 5800. The modules will be re-assembled on site under consideration of certain special machine room conditions.

The ammonia liquid chillers FX LP and FX VP are delivered completely so that solely the air cooled condenser (FX LP) or the evaporative condenser (FX VP) has to be connected on site.

The heat exchangers of the three series are designed for the parameters of a project on both the evaporatorand condenser side. In doing so, the temperature differences are chosen so that the customer requirements are met optimally. If the difference between the evaporating temperature and the temperature of the leaving secondary refrigerant is lower than 5K, the liquid chiller gets the addition HP (High Performance).

The standard version of the liquid chillers is equipped with a freely programmable standard logic controller PLC SIMATIC C7-633. All operating and fault signals as well as the process variables can be read from a LCD-display with background lighting. The display is operated via a robust foil keyboard having 6 functionand 24 system keys.

The liquid chillers are delivered without refrigerant and oil; they are filled with dry nitrogen (0.5 bar gauge pressure).

Each liquid chiller consignment is accompanied by the respective User Documentation which comprises a description of the refrigeration circuit, assembly and commissioning instructions as well as operating and maintenance instructions.

For detailed information about the screw compressors and standard screw compressor units specific Product Documentation is available.

DESCRIPTION OF FUNKTION AND DESIGN

AMMONIA LIQUID CHILLER SERIES FX P

FUNCTION

The screw compressor sucks refrigerant gas out of the liquid separator and brought up to condensation pressure. The refrigerant turns to liquid as its cooled in the condenser. Afterwards the liquid is injected back to the liquid separator via a high pressure float valve as expansion device. Inside the liquid separator takes place the separation of the liquid and gaseous phases. The liquid passes in a gravity driven circuit the evaporator. By taking up heat (delivered by the secondary refrigerant) it evaporates and a mixture og gas and liquid is comming back to the liquid separator.

During the operation of the screw compressor, oil is injected into the working chamber and then separated again from the refrigerant in the discharge side oil separator. The oil which has heated up in the compressor is cooled in an oil cooler to reach the entry temperature and passes a fine filter.

Despite of the highly effective oil separation system, oil penetrates to the low pressure side of the Chiller. A special automatic and maintenance-free oil returning system developed by Grasso returns the oil from the liquid separator back into the screw compressor. This is a basic precondition for a flawless operation of the evaporator system.

The capacity control of the screw compressor operates infinitely variable by volume flow control (internal bypass) and thus adapts optimally to the refrigeration capacity being effectively required and ranging from 100% to approx. 15%. The capacity slide is hydraulic driven and activated by 4 solenoid valves. The position of the slide is displayed on the compressor control.

SAFETY DEVICES

The ammonia chillers are equipped with a comprehensive software safety chain preventing higher pressures, temperatures and freezing of secondary refrigerant. A suction- and discharge pressure control and a motor current control is dominating the normal capacity control in the way if a limit value is exceeded then the capacity slide is activated into minimum position.

Several organizations in different countries require in due to laws and rules extensive additional safety equipment indipendent from software.

Following additional safety equipment is required by German TÜV:

Series FX PP

- Overflow valve from discharge- to suction side
- Safety pressure limiter (2 independent switches with internal and external reset)
- a safety relief valve (with blow off line) is not necessary, because there is a defined refrigerant charge and no vessel can be filled up with more than 90% of liquid refrigerant

Series FX LP, VP

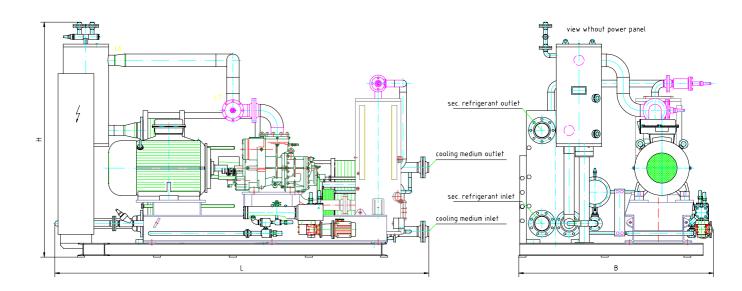
- Safety relief valve (with blow off line, to be connected to the outside by contractor)
- Overflow valve from discharge- to suction side
- Overflow valve from HP-receiver of thermosyphon oil cooler to LP side
- Safety pressure limiter (2 independent switches with internal and external reset)

Following additional safety equipment is required if the chiller is delivered according to EN 378 CE marked:

Series FX PP, LP, VP

- a pressure relief device for every vessel, which might be contain liquid refrigerant, within stop valves and a diameter > 152mm. This is not valid for oil separators and oil filters. The pressure relief device is executed as overflow valve.
- Safety pressure limiter (2 independent switches with internal and external reset)
- a double safety valve with change over valve, (with blow off line, to be connected to the outside by contractor)

If delivery is according to EN 378 then all in this rule definitely mentioned documentations will be delivered in the national language where the chiller is errected.


All other approvals have to agreed separately.

TYPE FX PP 450 ... 900 WEIGHTS AND CHARGINGS

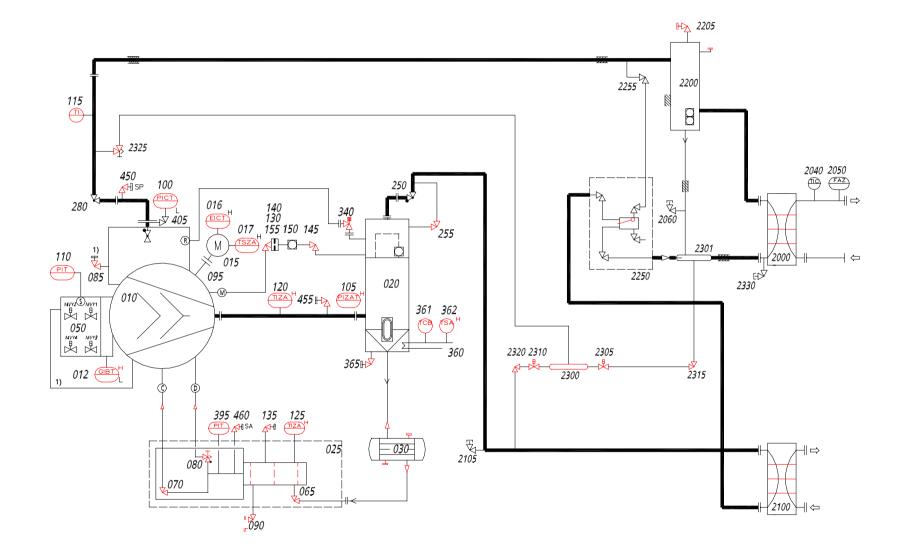
Below mentioned data are valid for following standard conditions:

Secondary refrigerant temperature +12°C/+6°C and Cooling medium temperature +27°C/+32°C For other conditions there might be divergent data.

Dimensions and Weights

Chiller	L (mm)		B (mm)	H (mm)	Weight without charging (kg)		Operating weight (kg)	
Type	ST	HP			ST	HP	ST	HP
PP 450	3200	3200	2000	2300	4200	4300	4400	4550
PP 550	3200	3200	2000	2300	4500	4600	4750	4900
PP 650	3700	3700	2200	2800	7000	7100	7280	7400
PP 900	3800	4000	2200	2800	7200	7400	7500	7750

Chargings, Ports, Sound pressure level


Chiller Type	Oil charging	Refrigerant charging	Cold water	Cooling water	Oil cooler	Power supply	Sound press. level
	dm³	kg	NB	NB	NB	kW	dB(A) 1m
PP 450	110	<mark>52</mark>	100	100	1 1/2"	110	80
PP 550	110	55	100	100	1 1/2"	132	81
PP 650	120	85	100/150	100/150	1 1/2"	160	83
PP 900	120	89	100/150	100/150	1 1/2"	200	84

ST – Standard : ΔT =5K at heat exchangers

HP – High Performance: ΔT <5K at heat exchangers

STANDARD LIQUID CHILLER TYPE FX PP 450 ... 900

PERFORMANCE PARAMETERS

AMMONIA LIQUID CHILLER SERIES FX PP - STANDARD

Chiller type	Performance parameters	Cold water inlet-/ cold water outlet temperatures (°C)							
	in kW	11/5	12/6	14/8	16/10	18/12			
	Qo	201	209	215	223	238			
PP 200	P _e	43	43	44	44	46			
	Q _c	233	242	249	258	276			
	Q _o	236	245	253	262	279			
PP 250	P _e	50	50	51	52	54			
	Q _c	274	284	292	303	324			
	Q_{o}	283	294	303	314	335			
PP 300	P _e	59	59	61	61	63			
	Q _c	326	338	348	360	385			
	Q_o	336	348	359	372	397			
PP 350	P _e	70	70	72	72	75			
	Q _c	388	402	414	428	458			
	Q _o	429	445	459	476	507			
PP 450	Pe	84	85	87	88	91			
	Q _c	496	<mark>514</mark>	<mark>529</mark>	<mark>548</mark>	586			
	Qo	506	525	542	561	538			
PP 550	P _e	99	100	103	103	108			
	Q _c	587	608	626	648	693			
	Qo	623	646	666	690	736			
PP 650	P _e	126	127	130	131	136			
	Q _c	736	763	786	813	870			
	Q _o	767	795	820	850	906			
PP 800	P _e	152	153	157	158	164			
	Q _c	885	917	945	978	1045			
	Q _o	825	855	882	914	975			
PP 900	P _e	162	163	167	168	175			
	Q _c	949	983	1012	1048	1121			
	Qo	991	1027	1059	1087	1170			
PP 1100	P _e	196	197	202	203	212			
	Q _c	1148	1190	1226	1268	1357			
	Q _o	1229	1274	1314	1361	1452			
PP 1300	P _e	243	245	251	253	263			
	Q _c	1423	1475	1519	1572	1681			
	Q _o	1589	1647	1699	1760	1877			
PP 1700	P _e	302	304	312	314	327			
	Q _c	1829	1895	1952	2020	2160			
	Qo	2225	2306	2379	2465	2628			
PP 2400	P _e	423	426	438	440	458			
	Q _c	2576	2670	2750	2846	3044			
	Qo	2664	2761	2849	2951	3147			
PP 2800	P _e	506	510	524	526	548			
	Q _c	3085	3197	3293	3408	3645			
	Q _o	3146	3260	3363	3484	3716			
PP 3300	P _e	601	606	623	625	651			
	Q _c	3617	3748	3860	3995	4273			

 Q_0 - Refrigerating capacity Q_c - Condensing capacity at cooling water temperatures in-/outlet = 27/ 32°C P_e - Power consumption