## FARO® Quantum<sup>M</sup> FaroArm®

## The Standard for Cost-Effective Factory Inspection





The FARO Quantum<sup>M</sup> FaroArm is a portable coordinate measuring machine (PCMM) that meets the most rigorous ISO 10360-12:2016 measurement standard in the world – an industry first. It is ideal for companies that want to maximize their manufacturing productivity, reduce scrap and waste and improve their production and quality control efficiencies.

The Quantum<sup>M</sup> is extremely durable and has been tested to withstand the harshest shop-floor environments. Additionally, it delivers market-leading reliability, portability, and ergonomics along with plug-and-play 3D laser scanning integration with optically-superior FAROBlu<sup>™</sup> technology.

MOST COMMON APPLICATIONS: Alignment • Dimensional Analysis • CAD-Based Inspection • First Article Inspection • Incoming Inspection • In-Process Inspection • On Machine Inspection • Part Inspection • Final Inspection • Reverse Engineering • Tool Building & Setup

TYPICAL INDUSTRIES: Aerospace: Part Inspection and Certification, Alignment, Tool & Mold Certification, Reverse Engineering • Automotive: Tool Building and Certification, Alignment, Part Inspection, Reverse Engineering • Metal Fabrication: First Article Inspection, Periodic Part Inspection • Molding/Tool & Die: Mold and Die Inspection, Prototype Part Scanning

## CERTIFIED TO MEET THE MOST RIGOROUS ISO 10360-12:2016 MEASUREMENT STANDARD

Quantum Arms are the first Arms in the market that are certified against ISO 10360-12:2016, setting a new industry performance bar, and ensuring maximum measurement consistency and reliability.

# INNOVATIVE DESIGN FOR HIGHEST PERFORMANCE AND FACTORY STRESS-TESTED FOR RELIABILITY

An all-new design ensures superior performance and confidence in measurement results in every working environment, while the FaroBlu featuring blue laser technology ensures best-in-class scanning capability. Every Quantum is tested for ruggedness and is factory-ready to ensure accuracy and performance.

#### **EXCELLENT ERGONOMICS AND USABILITY**

New ergonomic design, overall weight optimization, combined with new features such as tool-less quick change, kinematic intelligent probes, provide unequaled freedom of movement and an unparalleled measurement experience.

### HIGH SPEED WIRELESS OPERATION (ROBUST WI-FI®)

New sophisticated and robust electronic design delivers superior reliability and guarantees optimal wireless operation for scanning and probing, allowing unmatched reach across the manufacturing floor.

#### **EXTENDED BATTERY USE**

Dual hot-swappable batteries support prolonged cable-free operation of the device, making it easy to go to the part without the need for external power.

#### FAROBLU™ LASER LINE PROBE HD

The FAROBlu Laser Line Probe HD leverages optically-superior blue laser technology. The blue laser has a shorter wavelength than a red laser, and delivers improved scanning results with higher resolution, thanks to its ability to discover smaller details in an object. The blue laser also provides a 50% reduction in speckle noise compared to a red laser. Speckle noise is proportional to wavelength and degrades measurement accuracy.

## FARO® Quantum<sup>M</sup>





#### PERFORMANCE SPECIFICATIONS

| Contact Measurement (Arm)*         |                       |                       |                               |                       |                                |                       |                                |                       |                               |                       |
|------------------------------------|-----------------------|-----------------------|-------------------------------|-----------------------|--------------------------------|-----------------------|--------------------------------|-----------------------|-------------------------------|-----------------------|
| Measurement range                  | SPAT <sup>1</sup>     |                       | E <sub>UNI</sub> <sup>2</sup> |                       | P <sub>SIZE</sub> <sup>3</sup> |                       | P <sub>FORM</sub> <sup>4</sup> |                       | L <sub>DIA</sub> <sup>5</sup> |                       |
|                                    | 6 axis                | 7 axis                | 6 axis                        | 7 axis                | 6 axis                         | 7 axis                | 6 axis                         | 7 axis                | 6 axis                        | 7 axis                |
| Quantum <sup>M</sup> 1.5m (4.9ft)  | 0.018mm<br>(0.0007in) |                       | 0.028mm<br>(0.0011in)         |                       | 0.012mm<br>(0.0005in)          |                       | 0.020mm<br>(0.0008in)          |                       | 0.034mm<br>(0.0013in)         |                       |
| Quantum <sup>M</sup> 2.5m (8.2ft)  | 0.026mm<br>(0.0010in) | 0.028mm<br>(0.0011in) | 0.038mm<br>(0.0015in)         | 0.042mm<br>(0.0017in) | 0.018mm<br>(0.0007in)          | 0.020mm<br>(0.0008in) | 0.030mm<br>(0.0012in)          | 0.035mm<br>(0.0014in) | 0.045mm<br>(0.0018in)         | 0.060mm<br>(0.0024in) |
| Quantum <sup>M</sup> 3.5m (11.5ft) | 0.044mm<br>(0.0017in) | 0.055mm<br>(0.0022in) | 0.066mm<br>(0.0026in)         | 0.085mm<br>(0.0033in) | 0.030mm<br>(0.0012in)          | 0.040mm<br>(0.0016in) | 0.050mm<br>(0.0020in)          | 0.060mm<br>(0.0024in) | 0.080mm<br>(0.0031in)         | 0.110mm<br>(0.0043in) |
| Quantum <sup>M</sup> 4.0m (13.1ft) | 0.053mm<br>(0.0021in) | 0.065mm<br>(0.0026in) | 0.078mm<br>(0.0031in)         | 0.100mm<br>(0.0039in) | 0.034mm<br>(0.0013in)          | 0.040mm<br>(0.0016in) | 0.060mm<br>(0.0024in)          | 0.080mm<br>(0.0031in) | 0.096mm<br>(0.0038in)         | 0.132mm<br>(0.0052in) |

| Non-Contact Measurement (ScanArm)** |                               |  |  |  |  |
|-------------------------------------|-------------------------------|--|--|--|--|
| Measurement range                   | L <sub>DIA</sub> <sup>5</sup> |  |  |  |  |
| Quantum <sup>M</sup> 2.5m (8.2ft)   | 0.063mm (0.0025in)            |  |  |  |  |
| Quantum <sup>M</sup> 3.5m (11.5ft)  | 0.100mm (0.0039in)            |  |  |  |  |
| Quantum <sup>M</sup> 4.0m (13.1ft)  | 0.115mm (0.0045in)            |  |  |  |  |

All values represent MPE (Maximum Permissible Error)

- \* Contact Measurement (Arm): In accordance with ISO
- \*\* Non-Contact Measurement (ScanArm): Full System performance in accordance with ISO 10360-8 Annex D

<sup>1</sup> SPAT – Single Point Articulation Test

- <sup>2</sup> E<sub>UNI</sub> Distance Error between two points comparing measured vs nominal values <sup>3</sup> P<sub>SIZE</sub> – Sphere Probing Size Error comparing
- Page Sphere Probing State Error Comparing measured vs nominal values

  4 P<sub>FORM</sub> Sphere Probing Form Error

  5 L<sub>DIA</sub> Sphere Location Diameter Error (Diameter of the spherical zone containing the centers of a sphere measured from multiple orientations)

#### HARDWARE SPECIFICATIONS

10°C - 40°C (50°F - 104°F) Operating temp range: Operating humidity range: 95%, non-condensing

3°C/5min (5.4°F/5min) Universal worldwide voltage; Temperature rate: Power supply: 100-240VAC; 47/63Hz

#### FARO LASER LINE PROBE SPECIFICATIONS

115mm (4.5in)

2,000 points/line

±25µm (±0.001in) Accuracy: Minimum point spacing: 40μm (0.0015in)

25μm, 2σ (0.001in) Repeatability: Scan rate: 300 frames/second, 300 fps x 2,000

points/line = 600,000 points/sec

Laser: Class 2M Depth of field: 115mm (4.5in)

Weight: 485g (1.1lb) Near field 80mm (3.1in)

Far field 150mm (5.9in) Accuracy and repeatability specified at Full Field of View (FOV)

Certifications: Meets OSHA requirements, NRTL TÜV SÜD C-US Listed, Complies with Electronic Code of Federal Regulations 47 CFR PART 15, 17 CFR Parts 240 and 249b-Conflict Material, 21 CFR 1040 Performance standards For Light-Emitting Products, and 10 CFR Part 430 -Department of Energy; Energy Conservation for External Power Supplies. Complies with the following EC Directives: 93/68/EEC CE Marking; 2014/30/EU Electrical Equipment; 2014/53/EU Radio Equipment Directive; 2011/65/EU RoHS2; 2002/96/EC WEEE; 2006/66/EC WEEE; 2006/66/EC Batteries and Accumulators; 2014/35/EU Low Voltage Directive; 2009/125/EC Ecodesign requirement. Conforms to the following standards: EN 61010-1:2010 / CSA-C22.2 No. 61010-1; EN 61326-1:2013 EMC; ETSI EN 300 328 V2.1.1; ETSI 301 489-1 V1.9.2; ETSI 301 489-17 V2.2.1; ETSI EN 62311:2008; IEEE 802.11 b/g; FCC Part 15.247 (WLAN and Bluetooth); Japanese Radio Law MPT No. 37 Ordinance (MIC classification WW); UN T1-T8; IEC 62133 2nd ed.; IEC 60825-1:2014 ed3.0; FDA (CDRH) 21 CFR 1040.10 / ANSI 2136.1-2007; EN 50581:2012; 21 CFR 1002 (Records & Reports); 21 CFR 1010 (Performance Standards).

Shock and Vibrations Testing per International Electrotechnical Commission (IEC) Standards: IEC 60068-2-6; IEC 60068-2-64; IEC 60068-2-27 Extreme Temperature Cycling (-20°C to 60°C). Based on: IEC 60068-2-1; MIL-STD-81 OG; ISTA



Stand-off:

Effective scan width:

Points per line:







